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I. Introduction

Under certain smoothness and controllability assumptions the solutions
of broad class of optimal control problems is described by the Hamilton-
Jacobi-Bellman equation [l1). Under some further restrictions, the optimal
state-feedback control law can be computed analytically once the solution

of this equation is known. In certain applications (e.g., [2]), the

global nonlinear control law has been shown to offer significant advantages,
in performance as well as implementation, over local linearized control laws.
The problem of obtaining approximate solutions of the Hamilton-Jacobi-
Bellman equations, therefore, has received considerable attention. Quasi-
linearization [3], power series [4], and global analysis techniques [5],

[6], (7], to mention but a few examples, have been applied to this problen.

R e s s v ——

The purpose of this brief paper is to point out a functional expansion
technique which is applicable to the solution of the nonlinear partial
differential equation that is obtained when the optimal control can be ;
expressed analytically in terms of the cost-to-go. Analytical examples

are presented which provide an indication of the nature of convergence of

the method. A complete numerical analysis of convergence is not provided

here (and is probably best pursued in the context of individual applications);
but it is suggested that the functional expansion approach is often better-

suited than power series methods for numerical computations.
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II. Nonlinear State-Feedback Laws for a Class of Optimal Control Problems

In this section, we give an explicit statement of the class of optimal

control problems which can be addressed using the functional expansion

techniques of the following section, and display the Hamilton-Jacobi-Bellman

(RJB) equation characterizing the optimal control law.

Let [to'tll denote the time interval of the problem and let the space

U , of admisable controls be a convex open subset of Pc([to,tllykr), the

space of piecewise continuous functions on [to,tll taking values in .

We seek an optimal control u*cll to minimize the functional J: Y*R defined

by t
i 1
—3J) = [  L(x(t),u(t))at (1)

%

subject to the constraints

x(t) = f£(x(t),ult)) (2)

x(to) = x (3)

0

The functional L: Ranr <+ R is assumed to take the form

L(x,u) = u' u + Q(x) (4)

 where Q(x) satisfies

(i) Q(x) = Q(-x), and Q(x) > O for all xeR", x¥O.

(1) 1im  Q(x) = 0 1 L) 5 550
|x| |0 x| [ | x]] i

Sl bl SIS o

(iii) Q(x) is analytic in x.

The function f: R"xtvzr > Rn is assumed to take the form




f(x,u) = Ax + Bu + f(x,u) (5)

where

n
foou = £,0 + ] e

o u'(Plifl(x) + in(x)u) (6)

i
The following additional assumptions are imposed on f:
(iv) (A,B) is a completely controllable pair.

(v) f£(x,u) is analytic in x, for all ueR .

(vi)  lim LEeew || - 8
[l x|+ ]
[lu]]so

(vii) lim £ ) || = 0; 1lim llF,. ) ]| = o.
k|l ° x|l 2

In (6), ei denotes the ith unit basis vector, fo

n __rxr

PliERrxn, and Pzi: R R . Under assumptions (iv)=-(vii), it can be shown
1

(8] that (2) is (uniformly) completely controllable.

: RE-R", £ )",

Consider the truncated problem obtained by replacing to by Telto,tll
and X, by X, in (1)-(3) and assume that there exists an optimal control

ug for each T. Let the value function

n
V(xT.T): R x(to,tll -+ R (7)

be defined as the (minimum) value of the cost-to-go, which is achieved for

control u;. V is assumed to be twice continuously differentiable with respect

to x and continuously

1'l‘he time-varying case can also be considered, by requiring that the fore-~
going properties hold uniformly for tc[to.tll.

N s e
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differentiable in t.
Then the value function satisfies the Hamilton-Jacobi-Bellman equation

for problem (1)-(3)

(8)

1
o

= -min {u' u + Q(x) + 3%& f(x,0)} ; V(x.tl) 2
u(t)

¥l

The minimizing control is given in feedback form by

(x*(£) ,£) [F), (x* (£)) + F, Ger(e)] )72

= Ky

. N v
{s 5 (x*(E),e) ¢ 1_21 3, (x*(t) , £)F, | fl(x‘(t))} (9)

Inserting (9) in (8) and simplifying terms gives rise to a partial dif-

ferential equation in the cost-to-go, which is written-out here for future

reference:




v 1[av' Y W § % a9 -2
- = =SB+ ] ———f'z-"]1+— } = (rl.ew,)) .
ot 4 ax i=1 axi 11i ( 2 is1 axi 2i " 2i )
A T e v
[B o Bty 1]"Q+ax W vy
i=1 i
1 v’ 18 . 1[0, av :
-= B[I+— (F!'. +F .)] [a' + F f]
2 ox 2 izl axi 2i 2i ox izl axi 1li'l
n < n
...!'- z 3"_.“[ -aLB... z .a.!_fl Fl'].
2 j=1 axj ox is1 axi s S 1 o
I - 1
I+ F! . +F % f
[ s 151 B, 3" 2 )] F1591
n
1 .31’_[31'_ N eip 1 v 1
+ ) B+ ) f:.][1+— ) (F! +r)]
4 j=1 axj ox i=1 axi 1 11 2 i=1 axi 2i 2i
AT Tt -1[,, WV v
F23[1+5 R (F21+F21ﬂ [B &' iR Flifl]
i=1 =1 i
With the boundary condition V(x,tl) = 0
(10)

By redefining the time variable as T = t1~t, a pure initial value problem

with V(x, 1, = 0) = 0 is obtained. The Cauchy-Kowalewski Theorem [9] can

1
be applied to guarantee local existence and uniqueness of solutions to (10)
about T = 0; the foregoing hypotheses further guarantee that such a solution
can be uniquely continued to 11 = tl and thus establish the smoothness pre-
requisite for the functional expansion technigue to be introduced in the

next section.
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In the sequel, we will consider examples where lim tl = o jin this
case a solution of the algebraic equation obtained by setting the left-hand
side of (10) to zero can be guaranteed under the additional hypothesis that
V satisfies the conditions of Lyapunov's second theorem [10]. Bellman and
Bucy [11) explored analytic methods for this problem under the further
assumption that £(x,u) = 0 in (5); their work indicates the considerable
complexity of the nonlinear feedback problen.

Equation (10) may be regarded as a special case of a more general
class of problems to which Bellman's functional expansion technique applies;
we use it as motivation to introduce the more general notation for the next
section. Transferring all terms in V to the left-hand side and identifying
v with Vv, and g with Q, the only remaining term on the right-hand side, we

may write

Nv = g ;vixT = 0)=0 (11)

where the nonlinear operator N can be viewed as a mapping from the Banach
space Cl'z(Rnxlo,tlls R) into itself, or more generally as a mapping from
one Banach space to anot:hear.2

By virtue of the preceding assumptions, there is a related linear-
quadratic control problem whose solution is known; the HJB equation for it

is denoted

(12)

=
<
L}
Q
o
<
o
Pond
Ly
=
-
[
e
1ii
o

zr‘urthez definition of the topology is omitted because it would unnecessarily
complicate the presentation.

"
3
%
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where
v ov! v v
= o }- _o_ . .._.2 - __0_ ; .
NOVO ot * 4 Ox o ax 9x ol g™ * ox

and 9 is the first non-zero term in the Taylor series expansion of Q(x);
2

ann is a positive-definite symmetric matrix by virtue of assumptions (i)~
(iii).
The main point of this brief paper is that eq. (12), the natural auxiliary

equation for solving (11) happens to be nonlinear and thus a nonlinear ex-

tension of Bellman's technique is required.

PP ———
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III. A Functional Expansion Technique

The objective is to determine the solution of a nonlinear functional
equation, Nv = g, on the basis of the known solution of a related nonlinear

auxiliary equation, Nov, = g,. This is done by constructing a sequence of

0
approximating solutions vk, k=20,1,..., with v0 satisfying the auxiliary
equation, such that lim vk = v. The continuation method [12] for the con-

k

-0
struction of {vk} is based on interpreting the identity

Nov i M uNo-N)v + (g-g,)] (13)

as a continuation to € = 1 of the class of problems

Ky = g, el(N-Mv + (g -g)) (14)

Note that when € = 0, v_ solves (14) and when € = 1, the desired solution,

0
v, solves (14). Thus it is natural to expect that there should exist a

series expansion in € for v about vo:

. 2
Ve Yo + € v + € v, R (15)

1f Il(NB-N)V'l and Ilg-goll are sufficiently small, one may expect that
the series will have a radius of convergence greater than unity (the norms
being interpreted in an appropriate space). In this case the sequence of

approximating solutions
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will converge as desired.

f» Bellman [13] introduced a "fundamental technique" for recursively com-

puting the function v,

i+l in terms of v

o' Vi which was illustrated by

means of an example involving a linear auxiliary equation. We shall illustrate
the essential procedure for using a nonlinear auxiliary equation and show

that the recursion relation remains linear in v Formally, the procedure

i+l°
is to substitute the series expression (15) into (14) and to equate terms
in like powers of €. Volterra [14, p. 24] has developed an "extension of

Taylor's theorem” to a class of functionals, which can be applied to show

that there exist operators Nl' ~2' etc. such that

No N No(vo + Evl + ....) (16)

2
- N
No Y + € 1(vo)v1 + € Nz(vo'vl)vz +

and operators A Nl' A Nz, etc., such that

A No Ve (NO‘N)VC

2
(NO-N) (vo +ev1 +Ev, + e

2
A No ¥t el Nl(x.o)vl + € ANz(vo'vl)vz e

a7

A further property of the operators Ni' i > 1 is asserted by the following

lemma:




e

Under the conditions described in (14, p. 24}, the operators

Leowma:
N M s a4 s
i are affine in vi, given v0 vi-l' i.e.
TS - 3 e
i(vo, vi-l)vi L(vo)vi + A&(vo vi-l) (18)
This result is established in the appendix.
From (14)-(18) we may then conclude that the v, can be computed
recursively from the equations
h%vo - Y (solution assumed known).
Livglvy = BNv, - Bgy - Nytvg) 5 B3y =9y - 9
(19)

L(vo)v2 = ANl(vo)v1 - NE(VO'VI)

- Nk(vo,...,vk_l)

= AN -1(v0""'vk-2)vk—1

LivgIvy X

We remark that for the case of a linear auxiliary equation (as considered
then the operators L in (19) are independent of

by Bellman), say No - LO'
Vor and are in fact all equal to Lo. In the special case noted previously,
Bellman and Bucy [11] obtained a procedure similar to (19).

To illustrate the recursion (19), we apply it to the particular problem
0, i=1l,...,n, and show that

(10) with the simplifying assumption in
The first equation of (19) corresponds to (12). By

more can be said.
applying the Lemma, it can be shown that the n-th equation takes the form

s N$




= AN _WVgeeeeVy IV - N Vgreevy ) (20)

It is well-established ([1], [5], [15]) that (12) has the solution

- (]
Vo(x, t) x Ko(t)x (21)
with
- L = ' - ' . =
dtl Ko KOA + A Ko KOBB Ko + Q; x(tl) 0 (22)
and thus

avk 3Vk
[L(Vo)vkl(x.t) - 5 &) +x'(al ~ K (€)BB') —= (x,t); V) (x,t,) = 0

(23)

To find Vk(x,t) then, requires the solution of a linear variable-
coefficient first-order partial differential equation in n+l independent
variables.

While a complete convergence analysis lies beyond the scope of this
paper, we merely indicate some of the considerations involved. Since
Vk:Rnx[to,tll + R, some means of dealing with the unboundedness of ||x||

must be provided if numerical solutions are to be considered. One means
] is to seek a solution for "x|| < p, where p is chosen sufficiently large
to accomodate all initial conditions of interest; in this case it is

necessary to verify that the solution for ||x|| < p at time t does not depend

on the solution for Hx|| > p, for tE[t,tll. That this is in fact the case,

can be seen by




applying the method of characteristics to (20), and noting from (23) that

the hypothesis (iv) of complete controllability of (A,B), along with hypo-
thesis (i)-(ii), which imply that Q is positive definite, imply further that
(AO-BB‘Ko(t» is uniformly stable, and thus the characteristics diverge from
x=0 as T  increases from O to t .. Also, it is to be expected that

1l 1
lim Vk(x,t) = ® for each telto.tllg hence the best convergence result

]}

that might be expected is that "V(x,t)ll < Mé’”xllfor some values of M>0

and 0> this is much weaker that the usual bounds employed in solving p.d.e.’'s

Finally, thé aforementioned conditions on ‘i(No-N)vll and ||g~g°|| relate
to the rate of growth of the driving terms on the right-hand side of (20)
as n increases; in fact, these terms have been approximated to third order
by the proposed auxiliary equation.

A useful technique that is exploited extensively in the examples of
the following section is separation of variables. Certain problems may be
solved exactly by this method. Even in cases of numerical computation, a
multinomial expansion of Vn can reduce the computations to solving a
finite system of ordinary differential equations in the time-variable alone.

In these cases, the control law approximation

k n k
k 1 (., V° , K 3V K K
u((t) = - 3 :B s (x (t),t) + izl 7y (x (t),t)Flifl(x (t)#
k oV n v
- « B 2 i g J (xk(t) t) + f o | (xk(t),t)l'-‘ f (xk(t))'
2 j=1 | 0x P ax1 1i'1 |

(24)

S——
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can also be expressed as a power series in xk (the solution of (5) with
control uk); however, this series is not in general the same as the power
series for the optimal control law obtained directly from a series solution
of (10).

Although there is a formal correspondence in these cases between
solutions obtained by power series and by the functional expansion technique
it is thus difficult to evaluate the relative computational merits of the
two procedures. The relative difficulty of computing the functional ex-
pansion operators ANi' ﬁi' i > 1 must be balanced by the relative simplicity
of solving the recursion (19), for which standard numerical procedure are
available, and the relative ease of testing for convergence. Further
numerical analysis of the functional expansion technique appears warranted,
particularly for problems that are not readily amenable to power-series

solutions.




Iv. Examglos

Example 1:
A scalar control u on (to,tll = [0,T) is sought to minimize
oy 2 1 4
J) = [ @) +xT(e) + 5 x (E))at (25)
0

subject to the scalar state equation

x(t) = u(t) + ux3(t) : x(to) = X, (26) i

|

The optimal control law corresponding to (9) is é

1 3V |

* = o= e — * |

u*(t) 2 Ix (x*(t),t) (27) ; :

4

and the HJB equation corresponding to (10) is: ; E
. At L oEEE R

i z(s;)‘ux e % - 7 * iv(x,T) =0 (28)

|

The system (19) takes the form

s

v

Vk(x,T) =0

(29)




The solution of the first (auziliary) equation is known [17]) to be

dxo(t) 2

2
- = Ko(t) * 1 = O, KO(T) =0 (30)

Vo(x,t) - Ko(t)x H

S0 Ko(t) = tanh (T-t). Vl(x,t) may be found by separation of variables as

daK, (t)

VI(X.t) = Kl(t)x B g

- 4tanh(T-t)K () = - %-+ 2utanh(T-t); K (T) = 0

(31)

which has the solution

B o e S st 3 A +
xl(t) - g {1 - cosh (T-t)] + [16 (T-t) + 8 sinh 2(T-t)

+ %I sinh 4(T-t))cosh 4 (T-t) (32)

Similarly,

dK, (t) - 2 - i i
2 - 6Ko(t)K2(t) = 4x1(t) 4ux1(t). Kz(r) 0

dt

6
Vz(x,t) = Kz(t)x:

(33)
All of the succeeding equations may be solved by separation of variables
and use of the known variation of constants formula for the solution of a

scalar time-varying linear equation. The optimal control approximation

thus assumes the form

: (2i+1)
o) = - %_ (1+1)K, (t)x (34)

I >~>%

i=0

It should be noted that this is not the same type of approximation obtained
from ordinary power series or from singular perturbations in the parameter

U (if its value is small).
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Example 2:
A scalar bilinear control problem on [to,tl] = [0, 1 is to minimize
i 2 3 4 6
J) = [ @) +xT() + 5 x () +x (t))dt (35)
0
subject to
x(t) = ax(t) + bu(t) + cu(t)x(t); x(0) = xg (36)
|
'
{
The optimal control law corresponding to (9) is
brex*(t) | ¥
* = - e ————————— S * ) '
u*(t) ( 5 ) ™ (x*(t),t) (37) !
The limiting form of the HJB equation (as tl ) is i
4 \ 9x ox 4 | ox 2
(38)

The limiting form of (19) is:

v S IO G R
ax axax X

1312
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Applying the same idea as in the previous example we find

2 o
Vo(x) = Kox : bKo zxoa 1 0 (40)

§ /2
which has the (stable) solution Ko = fLi—SE—iE .

Taking

3 2
Vl(’" xlx ;3b1<1xo 3xla = cxo (41)

-1 2
§ gives Kl c [3bl(0 3a) Ko.

i can be identified. The approximate optimal control is then

Similarly, the coefficients for Vk(x) = Kk§k+2

K
otie) = -(%95) ] e, x4 (42)
| i=0

5 In this steady-state case where power-law solutions for Vi(x) can be assumed

we thus see that the coefficients will be uniquely determined from the solution

of linear equations, once the proper (stabilizing) solution of the auxiliary

equation is chosen.
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V. Conclusions

In this brief paper, we have pursued the extension of a functional
expansion technique suggested originally by Bellman and showed that it has
interesting consequences when applied to the solution of the Hamilton-Jacobi-
Bellman partial differential equation for a certain class of optimal control
problems. While this is perhaps implicit in Bellman's own work, we consider
it worthwhile to have clarified the nature of the continuation hypothesis
involved, to have identified the explicit requirements for convergence
(although a formal proof has not been provided), and to have more clearly
delineated the class of problems where the technique is potentially most
useful. Furthermore, we have distinguished this technique from power
series methods which have been more commonly applied, but which can yield

inferior solutions to highly nonlinear or time-varying problems.

e A W

S —




Appendix: Demonstration of Lemma

Given a nonlinear and sufficiently regular operator N operating on a

0
convergent power series
o«
v, = )‘ v ei (43)
€ ito i
it is to be demonstrated that the functional expansion
[+ 4]
N - N i
ove iZo i(vo....vi_l)vi € (44)

has affine tems

-~

L N
Ni(vo,...v._ v (vo)vi + i(vo,...,v

i-1" i )

i-1

This can be seen by direct recourse to Volterra's definitions of the

operators Ni[14. p.24):

N 1[at N
i(v0'°"vi—1)vi = ET—[;T?:] 0(v )l i=1],2,... (45)
€ - St
For instance (i=1):
t SN
1 (v))
N » N
AL { 1{“ o [xet] v (xe)axat (46)

0

where 6N°/6v0 is the functional (Frechet) derivative of No with respect

to v at vo and evaluated at [x,tle Rnx[to,tll. This is seen to be a linear

operation on v For i=2, we find

1°

SUUSP——
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t
2 1 § N
1 [a ] 0
gt e (v.) - ! f (v )Ix,t)v,_(x,t)dxdt
2! [d 2 0'¢€ €=0 to R® Sv 0 2
1 ) t GzNo
TS ]} [f J (v.))Ix,t;€,Tlv (x.t)dxdt]v (£,1)akat
n 20 1 1
t R n v
(o] £ R
0
= L(vo)v2 + ~2(v0'v1) (47)

The result follows by induction.
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